MATRICES ET APPLICATIONS LINÉAIRES

Exercice 1 ($f \rightarrow$ matrice). Déterminer les matrices dans les bases canoniques des applications linéaires suivantes :

- 1) $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x, y) = (x + 3y, 2y)
- 2) $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par f(x, y, z) = (-x + 2z, 3x - 4y, -5x + 6z, -7y + 8z)
- 3) $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ définie par f(P) = P(X+1) P(X)
- 4) $f: \mathbb{R}_3[X] \to \mathbb{R}$ définie par f(P) = P(1)
- 5) $f: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ définie par f(M) = AM, où $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$

Exercice 2 (matrice $\to f$). Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ et $g: \mathbb{R}^2 \to \mathbb{R}^3$ deux morphismes dont les matrices dans les bases canoniques sont respectivement:

$$A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 3 & 4 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{pmatrix}$$

Déterminer, les expressions de f et de g. Lorsque c'est possible, déterminer les matrices dans les bases canoniques $\operatorname{de} f + g$, $\operatorname{de} f \circ g$, $\operatorname{de} g \circ f$, $\operatorname{de} f^{-1}$, $\operatorname{de} g^{-1}$, $\operatorname{de} (f \circ g)^{-1}$ et $\operatorname{de} (g \circ f)^{-1}$.

Exercice 3. Déterminer les matrices dans les bases canoniques des applications linéaires suivantes. Montrer que ce sont des isomorphismes, et déterminer les matrices de leurs applications réciproques.

- 1) $f: \mathbb{R}_2[X] \to \mathbb{R}^3$ définie par f(P) = (P(1), P(2), P(3))
- 2) $f: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par f(P) = P(X+1)
- 3) $\Phi: E \to E$ définie par $\Phi(f) = f' f$, où $E = \text{Vect}(\cos, \sin)$

Exercice 4 (*Endomorphismes nilpotents*). Soit $u \in \mathcal{L}(\mathbb{R}^3)$ tel que $u^3 = 0$ et $u^2 \neq 0$, où l'on note $u^k := \underbrace{u \circ \cdots \circ u}_{k \text{ fois}}$.

- 1) Justifier l'existence de $a \in \mathbb{R}^3$ tel que $u^2(a) \neq 0_E$.
- 2) Démontrer que $\mathcal{B} = (a, u(a), u^2(a))$ est une base de \mathbb{R}^3 .
- 3) Déterminer la matrice de u dans la base \mathcal{B} .
- 4) En déduire que $\{v \in \mathcal{L}(\mathbb{R}^3) \mid v \circ u = u \circ v\} = \text{Vect}(\text{id}, u, u^2)$, où on note $\text{id} = \text{id}_{\mathbb{R}^3}$.

———— Changements de base(s) —

Exercice 5. Soit $\mathcal{B} = ((1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1))$ une base de \mathbb{R}^4 . Déterminer les coordonnées de $u = (2, 1, -3, 4) \in \mathbb{R}^4$ selon \mathcal{B} .

Exercice 6. On considère $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique (e_1, e_2, e_3) est :

$$M = \left(\begin{array}{ccc} 15 & -11 & 5\\ 20 & -15 & 8\\ 8 & -7 & 6 \end{array}\right)$$

Montrer que les vecteurs

$$e'_1 = 2e_1 + 3e_2 + e_3$$
 $e'_2 = 3e_1 + 4e_2 + e_3$ $e'_3 = e_1 + 2e_2 + 2e_3$

forment une base de \mathbb{R}^3 et calculer la matrice de f dans cette base.

Exercice 7.

- 1) On note $P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Justifier que la matrice P est une matrice de passage de la base canonique à une autre base \mathcal{B} qu'on précisera.
- 2) On note $f \in \mathcal{L}(\mathbb{R}^3)$ défini par f(x,y,z) = (2x+2y+z,-2x-y,x+y-z). Déterminer la matrice de f dans la base canonique, puis dans la base \mathcal{B} . En déduire $f \circ f \circ f$.

Exercice 8. Soit $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables. Montrer que pour tout $k \in \mathbb{N}$, A^k est semblable à B^k .

Un peu de tout

Exercice 9. Déterminer le rang, le noyau et l'image des matrices suivantes :

$$A = \begin{pmatrix} 4 & 8 \\ 2 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 0 & 2 \\ -2 & 1 & 0 \\ 0 & 3 & 4 \\ 4 & 1 & 4 \end{pmatrix} \qquad D = \begin{pmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

Montrer que $\mathcal{M}_{3,1}(\mathbb{K}) = \operatorname{Ker} D \oplus \operatorname{Im} D$.

Exercice 10. Soit p le projecteur sur F parallèlement à G, avec

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$$
 $G = \text{Vect}((1, 1, 1))$

- 1) Déterminer une base \mathcal{B} adaptée à F et G.
- 2) Donner la matrice de p dans la base \mathcal{B} .
- 3) En déduire une expression de *p*.

Exercice 11. On pose $S = \begin{pmatrix} -5 & -6 & -6 \\ 6 & 7 & 6 \\ -2 & -2 & -1 \end{pmatrix}$ et *s* l'endormorphisme canoniquement associé à *S*.

- 1) Montrer que *s* est une symétrie.
- 2) Déterminer ses éléments caractéristiques.
- 3) En déduire une base \mathcal{B} pour laquelle $Mat_{\mathcal{B}}(s)$ est simple et donner cette matrice.

Exercice 12. En utilisant la trace, montrer qu'il n'existe pas deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ telles que $AB - BA = I_n$.

Exercice 13. Soit $A, B \in \mathcal{M}_n(\mathbb{R})$.

- 1) On suppose que $\operatorname{Tr}(AA^{\top}) = 0$. Montrer que A = 0.
- 2) On suppose que pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$, on a Tr (AM) = Tr (BM). Montrer que A = B.

Exercice 14 (*). Soit E un \mathbb{K} -e.v. de dimension $n \in \mathbb{N}^*$. Soit $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ et $D = \begin{pmatrix} \alpha_1 & (0) \\ & \ddots & \\ (0) & \alpha_n \end{pmatrix} \in D_n(\mathbb{R})$

- 1) À quelle condition sur $\alpha_1, \dots, \alpha_n$ la matrice D est-elle la matrice d'un projecteur ? D'une symétrie ?
- 2) Montrer que tout projecteur $p \in \mathcal{L}(E)$ ou symétrie $s \in \mathcal{L}(E)$ peut être représenté par une matrice diagonale dans une base bien choisie. (*Cette matrice vérifie alors nécessairement la condition trouvée en question 1*)